
Journal of Algebra, Number Theory: Advances and Applications  
Volume 5, Number 1, 2011, Pages 11-19 

2010 Mathematics Subject Classification: Primary 11F20, 11L05.
 Keywords and phrases: twisted Cochrane sum, twisted Kloosterman sum, mean value. 

This paper is supported by N. S. F. (No. 10601039) of P. R. China. 

Received April 1, 2011 

 2011 Scientific Advances Publishers 

MEAN VALUE OF THE TWISTED  
COCHRANE SUMS   

JUNHUAI ZHANG 

Research Center for Basic Science 
Xi’an Jiaotong University 
Xi’an Shaanxi, 710049 
P. R. China 
e-mail: zhang_junhuai@163.com 

Abstract 

Let q be an odd prime and χ  be the non-principal Dirichlet character mod q. In 
this paper, the authors studied the mean value of the classical Cochrane sums 
twisted by χ  and gave an asymptotic formula for it. 

1. Introduction 

Cochrane introduced a sum such as 
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which is analogous to Dedekind sums and we prefer to call Cochrane 
sums. Here q is a positive integer and h is an arbitrary integer, 1≡aa  
(mod q), 
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and ′∑ denotes the summation over all a with ( ) .1,,1 =qaqa   

Various properties of Cochrane sums have been investigated by many 
scholars. For example, Zhang and Yi [6] obtained the upper bound as 

( ) ( ) ,log, 221 qqqqhC τ  

where ( )qτ  is the Dirichlet divisor function. In [7], Zhang studied the 

mean square value and obtained for ,2q  
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where ( )qϕ  is the Euler function. Zhang [8, 9] also studied the mean 

value weighted by Kloosterman sums. Furthermore, Lu and Yi [1] gave 
an asymptotic formula for the mean square value over short intervals. 

It is quite natural to consider the corresponding sums twisted by 
Dirichlet characters. Suppose χ  is a Dirichlet character mod q, the 

twisted Cochrane sum is defined by 
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It is clear that ( )( ) ( )( ),xx −=−  thus ( ) ,0, =χ qhC  if ( ) .11 −=−χ  Quite 

recently, Ren and Yi [3] obtained an asymptotic formula for the mean 
square value as 1≡q  (mod 4) being a prime and χ  being the Legendre 

symbol mod q. This present note focuses on the mean square value 



MEAN VALUE OF THE TWISTED COCHRANE SUMS 13

( ) ,, 2

1
qhC

q

h
χ

=
∑  

for an arbitrary character χ  mod q with ( ) .11 =−χ  

Theorem 1. Let q be an odd prime and χ  be an arbitrary non-

principal character mod q with ( ) .11 =−χ  We have 
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where the O-constant is absolute and 
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where ( ) ( )χζ ,  sLands  denote the Riemann zeta function and Dirichlet                     

L-function, respectively. 

2. Proof of the Theorem 

First, we introduce the classical Kloosterman sums. Let cnm and,,  
be integers, ,1c  the classical Kloosterman sum is defined by 
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mod
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where ( ) .2 ixexe π=  The well-known estimate essentially due to Weil [5] 
is 

( ) ( ) ( ),,,;, 2121 ccnmccnmS τ  

where ( )cnm ,,  is the greatest common divisor of m, n, and c. The twisted 
Kloosterman sum is defined by 
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which enjoys the same upper bound 

( ) ( ) ( ).,,;, 2121 ccnmccnmS τχ  (3) 

The estimate (3) plays a quite important role throughout this paper. 

Now, we consider the mean square value 
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for an odd prime q and χ  mod q with ( ) .11 =−χ  By introducing the 
Fourier expansion, 
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Thus from (3), we have 

( ) 2

1
, qhC

q

h
χ

=
∑  

( )
( )

2
1221

001
4 log

;,
16

1 −−χ

<<=

++′′
π

= ∑∑∑ qNNqOmn
qhnmS

NnNm

q

h 

 

( ) ( ),loglog,
16

1 2251224
4 NqNNqNqOqhW −− +++

π
=  



MEAN VALUE OF THE TWISTED COCHRANE SUMS 15

where 
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Opening the square in ( ),, qhW  we have 
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if ( ),mod2211 qnmnm ≡  and it vanishes otherwise. Hence 
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Now, we separate the summations over 2121 and,,, nnmm  into two 

parts, namely, 
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The terms with 2211 nmnm ≠  contributes to ( )qhW ,  at most 
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where we have used Abel’s summation formula and the Pólya-Vinogradov 
bound (see [2, 4]) 
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by taking .3qN =  

Now it suffices to compute ( )., qA χ  Suppose χ  is a d-th ( )1>d  

character mod q, that is, ( ) 1=χ ad  for each a with ( ) ,1, =qa  we obtain 

from the Euler product and the fact ( ) ( ) 01 1 =χ++χ+ − aa d  for all a 

with ( ) ( ) 1,1, ≠χ= aqa  that 
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where ( ) ( )χζ ,and sLs  denote the Riemann zeta function and Dirichlet           

L-function, respectively. Hence 
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The theorem follows immediately by inserting the expression of ( )qA ,χ  

to (4). 
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